Crazy Code, Crazy Coders

Crazy Code, Crazy Coders

WALTER E. BROWN, PH.D.

< webrown.cpp @ gmail.com >

Edition: 2019-11-16. Copyright © 2019 by Walter E. Brown. All rights reserved.

Hello!

* As a former German speaker, | am very grateful
for the invitation to travel here to Berlin
to take part in Meeting C++ 2019.

e Ladies and gentlemen, | am very pleased to be able
to address you today as the closing keynote speaker.

e Alas, I'm a bit out of practice at speaking German,
so the remainder of this talk will be held in English.

¢ Thank you again.

ey — 3

Y
@
=
5
Qo
<
_‘
=
o
=
=7
=L
@

Comrient © 2019 by Walter €. 8rown. Aligts eserves

_Let's keep this in mind
* “A computer
is a stupid machine
with the ability
to do incredibly smart things, ...

e “.. while computer programmers
are smart people
with the ability
to do incredibly stupid things.”

— Bill Bryson,
1998

Ly — 8

_Let's also keep this in mind

“Sometimes we discover unpleasant truths.

“Whenever we do so, we are in difficulties:

= “suppressing them is scientifically dishonest,
so we must tell them,

= “put telling them, however, will fire back on us.

“[W]e will be written off as

= “totally unrealistic, = “dangerously revolutionary,

= “hopelessly idealistic, = “foolishly gullible

“(Besides that, telling such truths ... is not without

personal risks. Vide Galileo Galilei..... [sic])”

— Edsgar W. Dijkstra,
How do we tell truths that might hurt?, 1975

‘Capyfght 2018 by Waller E Brown A rigts resenvd. 9

_How to become expert?
“The answer is the same
in all the fields I've seen:

@ “Learn the basics.
@ “Study the same material again

concentrate on the details
you didn’t realize were important
the first time around.”
— Andrew R. Koenig,

“Forward,” More Exceptional C++,
2001

L — 10

Crazy Code, Crazy Coders

_And there’s always more to learn
e “Learning is cumulative. S
= “It’s revisionist. }
= “It's iterative. ")
e

= “It’s incremental. ...

“[So] your knowledge always increases.

"[But] your appreciation of what you don’t know
increases [as well].”

— Kevlin Henney,
What Do You Mean?, 2019

Copyign 2010y Water €. Bun A esmes 11

_In other words

e “Study others’ code.

e “Learn from past successes.

e “Learn even more from past failures.”

— Howard E. Hinnant,
Design Rationale for <chrono>, 2019

Copyign 2010y Water € Bun A esmes 13

_l also have for you today a mix of

e Examples of unfortunate outcomes:

= Some silly, some humorous, some just wrong, but also
some truly horrific.

o Selected advice from other experts:
= Some quite recent, but also some rather older.

¢ Some cultural influences that can make our jobs hard.
e Some new, useful C++17 and C++20 features.
¢ And a few bits of fun along the way.

¢ (Coincidentally, some of my topics overlap talks by
other speakers; do view those for additional depth.)

Copyign 2010y Water € Bun A esmes 15

_How to start?

“One of the best ways to learn
is the study of examples.

“It is useful to examine both

= “good style to be emulated as well as
= “poor practice to be avoided.

“The skillful critique of imperfect art
— critical analysis — is a powerful technique
to improve the quality of one's own work.”

— Marc F. Paterno,
Defective C++, 2003

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 12

_So | will show many small examples

¢ | chose most of these C++ excerpts because ...

= (or they have reliably been reported to me) ...

often enough to annoy/irk/peeve/irritate/provoke me.
o | will discuss a few of them in considerable detail,

but we’ll simply look (and shake our heads) at others.
¢ To avoid embarrassments and legal entanglements:

= | kept the essence of each code snippet, ...

= But did sanitize (reformat/recode/restyle) each one, ...

= While laundering (disguising) identifiers.

‘Copyrght 2018 by Wler E Brown. A igtsreerved. 14

_As I've often said, please be forewarned

e Based on my training and extensive experience,

I do hold some rather strong opinions
about computer software
and programming methodology.

¢ | know that all these opinions
are not yet shared by all programmers.

e But they should be! © ’

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 16

Crazy Code, Crazy Coders

¢ “[W]hen you need to pay tuition and a mortgage,
you are willing to put up
with a certain amount of stupidity A Few Bits of Fun

so that you can take care of your family. Before We Get Serious

“Once those bills are paid,
your tolerance for idiocy shrinks quite a bit.”

— Pseudonymous Blogger,
It's No Big Deal, 2017

Coyright © 2019 by Walter €. Brown. Al eservec

o —— 17

Hobbit

‘Capyfght 2018 by Waller E Brown A rigts resenvd. 19 ‘Copyrght 2018 by Wler E Brown. A igtsreerved. 20

Once upon a time _And now

e A C++17 programmer walked into a local pub
and ordered 1.000'000'119F /beers.

s

¢ The proprietor said, “I'll have to charge
you extra; that’s a root beer float.”

¢ “In that case,” replied the programmer,
“make it a double.” -

‘Capyfght 2018 by Waller E Brown A rigts resenvd. 21 ‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 22

Crazy Code, Crazy Coders

_Anumber of years ago, we boughtaGPS

e We don’t use “Home.”

* Instead, we entered our
home address in the gen’|
directory under my name:

= “Brown, W E”.

Unprofessional Results

That Shouldn’t Have Reached Production

* Here’s what the GPS speaks
as we arrive home:

= “Arriving at
Brown, West East,
on right.”

Conyright © 2019 by Walter €. srown. Alrights esrves
Conyigh© 2010 by Wt . roun A s resned. 24

Web Software Developer (.NET / C#/ MVC / SQL) - Deployment
UniversityTickets - Wallkill, NY
Do you have at least 1 year of BS/MS in Computer Science or related
field/degree, and/or equivalent work experience experience? *
O Yes

No
Do you have the following license or certification: New York? *

Plug-

N-p
Connexig lay

N « pra

C°nnectiv
2 7N

Back

Copyigh 02010y Wate . roun. A s s 25 Conyigh© 2010y Wt . roun A s resned. 2%

Product information

Technical Details

Brand name Microsoft WAAR haaldelijk fout i

kan het token blokkeren!

Item Weight 540 g Irloggen op ™
Product Dimensions :

Item model number 4CH-00011 Voer PIN in:

< Minimum PIN lengte 92302984 bytes] -

Series Mouse Wireless Laser Natural 6000

Color Grey -/~ Maximum PIN lengte 92302984 bytes

—

Copyigh 02010y Wate . roun. A i s 27 Conyigh© 2010 by Wt . rown A s esned. 28

Crazy Code, Crazy Coders

_Our favorite artists? L didn’t know October was a number!

How many employees work at your company?

ALBUM RADIO

Fear Inoculum

O Less than 10

QO s1-100
O 101-500
O 501-1,000
O 1,001-5,000

O More than 5,000

Copyign 2019 by Water £ Broun. Al igts e 29 Copyight © 2010 by Wiater E Brown. Abigts esve 30
_Rear? Bottom? Rump? _s there a postal code for this country?
Countr
TURKSH CAICOSIN
TUVALU
UGANDA

UNITED KINGDOM
)
URUGUAY
ISA
UTD.ARAB EMIR.
UZBEKISTAN
VANUATU
VATICAN CITY
VENEZUELA
VIETNAM
WALLIS FUTUNA
WEST SAHARA
YEMEN

« [

ZAMBIA
ZIMBABWE

Copyign 2010y Water € Bun A esmes 31 Copyi 2010y Water E Sown A i esened. 32

_Time out? Time in?

March -| 2015 -

SMTWT F S May 4, 2032
Hay O, 1962

12345 6() |¢um
mm) | (5)10 1112131475

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30311 2 3 45

<< Today >>

Copyign & 2010 Wate £, Brown, Al s e 33 Conyigh© 2010 by Wt . rown A s esned. 34

Crazy Code, Crazy Coders

Error-handling

) Error in error-handling. Sorry, no handling possible.]

oK

Copyigh 02010y Wate . roun. A i s 35

Bel 2 Thi "
o “During the 1991 Gulf War, the tracking computer
for [a] missile system ... converted time values from
decimal to binary [with an error of only] 0.0001%. ...

e “During the war, the clock had run for 100 hours,
accumulating an error of 0.3433 seconds, when Iraq
launched a Scud missile. In that time, the Scud could
travel half a kilometer.

e “[The missile] slipped through the defense system and
detonated on a barracks, killing 28 people.”

— Tim Chartier,
“Devastating Roundoff Error”, 2006

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 36

_Another example

* “A software glitch forced 12 ... stealth fighters to ...
turn back.... The problem seems to have arisen ...
from the change in longitude from W179.99 degrees
to E180 which occurs on the International Date Line.”

— News report, 2007

e “At the international date line, whoops, all systems
[failed, including] their navigation, part of their
communications, [and] their fuel systems.”

— Maj. Gen. Don Sheppard (ret.)

Copyigh 02010y Wate . roun. A s s 37

And sl more. from earier th

* “Nokia 9 buggy update lets anyone bypass fingerprint
scanner with a pack of gum” — headline, 2019-04-22

3

“GPS [d]evices made more than 10 years ago had a
finite amount of storage for their date accounting
system, and that number maxed out on Saturday,

6 April [2019].”

= “coastal and marine automated stations” went offline.

= NYC gov’t wireless network died, affecting city services
ranging from police to sanitation.

= ... and many more Bad Things happened.
= Didn’t we learn anything from Y2K?

‘Copyrght 2018 by Wler E Brown. A igtsreerved. 38

_Our embarrassments seem unending
¢ “Today, researchers ... are detailing ... vulnerabilities

in a popular operating system that runs on more than
2 billion [sic] devices worldwide. ...

* “VxWorks is [a] real-time operating system for ...
devices, like medical equipment, elevator controllers,
or satellite modems. ...

e “Roughly 200 million devices appear to be vulnerable;
the bugs have been present [since] 2006. [T]he
patching process will be long and difficult”

— Lily Hay Newman,
“An Operating System Bug ..."”, Wired, 2019-07-29

Copyigh 02010y Wate . roun. A i s 39

_A stack trace while driving???

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 40

Crazy Code, Crazy Coders

FYl

¢ Please take note of the Forum on Risks to the Public in

Computers and Related Systems: .

= |naugurated in 1985, moderated by Peter G. Neumann Let's Rethink Some Common
on behalf of the ACM Committee on Computers and C++ Coding Practices

Public Policy.

= Current and all previous digests are online at http://
catless.ncl.ac.uk/risks.

¢ Note also a monthly column, Inside Risks, in CACM: “Practice yourself .. in little things

= “Edited and distilled highlights from the columns appear and thence proceed to greater.”
bimonthly in ACM SIGSOFT Software Engineering Notes.” — Epictetus,
= Recent and “important” columns are online at http:// ca. 55-135

www.csl.sri.com/users/neumann/insiderisks.html.

Coyright © 2019 by Walter €. Brown. Al eservec
‘Copyfght 2018 by Waller E Brown A rigts resenvd. 41

_Anything wrong here? _The “let me change my mind” idiom
e void calcul8() { e
double X; d{ }; //zero-init thusly, or copy-init via =0.0 int k =N; // guess at the right value ...

// Or maybe copy-init via = std :: nan("") if(k >max) k=max; //..and correct the guess if necessary

}

¢ Uninitialized local variables are usually problematic:
= Especially when of native (e.g., arithmetic) type — no c’tors!
= And even more problematic when of floating-point type.

Why not simply set k’s value correctly ab initio, thus
allowing for const-correctness?

e Why is uninitialized floating point so dire? i
o o)) i = 2 CN:
= Because the uninitialized residue in the above variable d is !nt const k1 = N>max ? max : N; //better
a bit pattern that could denote any floating point value, ... intconst k2 = max<N ? max : N; //even better

= Even one of the bit patterns denoting a signalling NaN! intconst k3 = std :: min(N, max); // very much better!
(When did your team last code with an sNaN in mind?)
Copyigh 92010y Wote . Broun AL i s 43 Copyigh 2010 by Weter . rown A i e, 44
_What about complicated, one-off initialization logic? _Scope rules matter, too
¢ Consider using a lambda expression in the initializer: e int x = 42;
void act() {

= Define it there to be evaluated during initialization, ...

float x = x; //wait, what?
= Then right away call the corresponding closure object! .

eTconstt= [&] () } /
{ // arbitrarily much complex code ... o Each name has a point of declaration after which that

{gtu:z bi:'igaulp\;lsu'gfm value, then name is in scope (decl is findable via appropriate lookup):

O = “The point of declaration for a name is immediately after
its complete declarator....” (See [basic.scope.pdecl]/1.)

e Such idiomatic use is commonly (alas, inaccurately)

. R . = So “the second x is initialized with its own (indeterminate
termed an immediately-invoked lambda or IIL. ()

value” — whose bit pattern might be that of an sNaN!

Copyign 2010y Water € Bun A esmes 45 Copyi 210y WaterE Sown A i esened. 46

Crazy Code, Crazy Coders

|diomatic counted loops M

¢ void eval() {
auto b[N] = {~};

for(intk=0; k< N;)

.

= k’s previous value is unused, so why copy and return it?
= Instead, avoid an implicit copy by coding such loops with

e “But the compiler will optimize it for me.”
= Maybe, but post-increment here misstates the intent.
= |t’s a poor coding habit that hinders comprehension.

Copyigh 02010y Wate . roun. A i s 47

|diomatic counted loops 3

e void eval() {
auto b[N] = {~};
for(intk=0;k I=N; ++k)] —

} H
* Not convinced? Compare with the identical loop
controlled by an iterator rather than by a counter.

e So let’s use this same coding pattern everywhere:
= When loops treat counters/iterators/pointers alike, it’s
one less distinction for us to remember.
= Further, any pattern deviations become more apparent,
letting us reason more effectively about our programs.

Copyigh 02010y Wate . roun. A s s 49

Idiomatic counted loops @

e void eval() {
auto b[N] = {~}

for(intk =0; (k< NJ; ++k)

}
e Why use operator < here?
= As written, this loop’s exit condition is k >= N
(i.e., “we’ve performed at least N iterations”).

= But the likely intended exit condition is k ==
(i.e., “we’ve performed exactly N iterations”)!

N in the predicate of such loops.

Conyigh© 2010 by Wt . roun A s resned.

4

A range-based for is no panacea

e template< class T >
void refill(std::vector<T> & vec, T const & value) {
for(auto & e : vec)
e = value;

}

¢ This won’t always compile; did you spot the bug?
e Hint: when T is bool, €’s type can’t/mustn’t be bool &:

= |teration will involve a temporary (of a proxy type for the
bit in question), which can bind to a const ref type only.

= Should declare auto && e to infer the correct type!

= (But try teaching this to inexperienced programmers.)

Copyigh 02010y Wate . roun. A i s 51

Idiomatic counted loops @

¢ And what about the type of the counter variable?
= Signed or unsigned?
® Possibilities:
= for(auto k = 0;
= for(auto k = Ou; -
= for(sizet k = 0z; -~ // suffix proposed for C++23
= for(ptrdifft k = 0; -
= for(vector< > :: size_type k

= for(decltype(v) :: size_ type k =

Conyigh© 2010y Wt . roun A s resned.

Analysis of range-based for @™

o for(auto e :

source) is tempting, but very bad:

= |t copies each element, which might not compile (e.g.,
std::unique_ptr elements aren't copyable).

= |t may misbehave at runtime (e.g., e = val; will update

the copy, not the original element in the source range).

= |t may perform poorly (e.g., std::string elements may be

expensive to copy).
« for(auto & e : source) is better, but not perfect:

= Does work with const or modifiable elements, allowing

them to be observed or mutated, respectively, in place.

= But won't compile for proxy objects or rvalue sources.

(adapted from N3853

Conyigh© 2010 by Wt . rown A s esned.

Crazy Code, Crazy Coders

_Analysis of range-basedfor @ (adapted from N3853)
o for(auto const & e : source) works in limited cases:
= Does observe elements in situ, even for most proxies.
= But obviously can't mutate const elements in-place.
e Explicit (non-deduced) element types may be worse:
= for(string e : source) still copies elements.
= for(string & e : source) fails for const/rvalue elements.

= for(Elem const & e : source) can be “actively harmful”
when the type, Elem, is even slightly wrong:

e E.g., for a source of type std :: map<K, V>, an Elem type
std :: pair<K, V> will convert-copy each element ...

¢ Because the element type is actually std :: pair<K const, V>.

‘Copyfght 2018 by Waller E Brown A rigts resenvd. 53

_Analysis of range-based for @ (C++20)

o Will be able to rewrite this incorrect code:

= std::vector<std::string> make_strings(); //factory fctn

= for(auto && c : make_strings() [0])
g

e ... to use the new optional init-statement feature:

= for(auto & v = make_strings(); auto && c : v[0])
T

= This now extends the returned vector<string>’s lifetime

to the end of the loop’s body.

= (Could of course instead copy the vector if so desired.)

‘Capyfght 2018 by Waller E Brown A rigts resenvd. 55

_Analysis of range-based for @

o Further, keep in mind that code such as this:

= std::vector<std::string> make_strings(); //factory fctn
= for(charc : makestrings()[0]) ~ ¢ ;

¢ ... by definition behaves as if the loop were written:

= auto && s =make_strings() [0]; // ref to 0t string
for(auto b = s.begin(), e =s.end()
; bl=e

; ++b) - kb

But s refers to the leading (0t") member of a temporary
vector, now gone (nothing extended the vector’s lifetime).

Thus s is a dangling reference, unusable in the loop!

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 54

Let's Rethink bool

“[The Analytical Engine] might act

upon other things besides number....”
— Ada Lovelace,
1815-1852

Comrignt © 2019 by Walter €. Srown. Aligts eserves

Out of i f f ming?
¢ template< typename Container
, typename UnaryPredicate
> “This function has the
void replicate if(Container & cont | 1oie <t slge) sl aa Aol
, Predicate & pred |[o 1 eRe e e o)y A
) {
for(auto const && e : cont)
if(pred(e))
cont.push_back(e); // append a copy of this element

— Stephen Dewhurst,

2003

}

* Would the programmer have invalidated the iterator
had it been not concealed by the range-based for?

‘Copyrght 2018 by Wler E Brown. A igtsreerved. 56

@ if(itworks(+)) @ if(itworks(~))

{ return true;
return true; else
} return false;
else
{ @ if(it.works()) return true;
return false; else return false;
}

@ return itworks() ? true : false;

® return itworks(); //my preference

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 58

Crazy Code, Crazy Coders

_But I've seen these variations, too

o if(it works() ? true : false) { return true; }
return false;

o if(bool b =it works()) returnb; else return false;

o switch(it works(~)) {
case true:
return true;
break;
case false:
return false;
break;
default:

‘Copyfght 2018 by Waller E Brown A rigts resenvd. 59

_More bool-related foolishness

e if(to_be or notto_be) {
: //some code here

}
else {

: // exact same code here!

}
* bool Isltvalid() { return true; }

¢ template< class Value >
Value return_value(Value value) { return value; }

return (Isltvalid() ? true : return_value(false));

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 60

_And still more bool illogic
e while(true) { bool flag = true; } //ReALy want a true flag

e bool isAlive() {
try { return true; }
catch(myException ex) { return false; }

}
e for(; ;) {
if(! condition1()) break;
if(! condition2()) break;

: // code goes here
break; // always break out of the loop at the end

}

‘Capyfght 2018 by Waller E Brown A rigts resenvd. 61

_And, when bool isn’t good enough

e enum logical { tautology
, contradiction
, http_404_not_found
b

e enum maybe_so { always_so
usually so
often_so
sometimes_so
rarely_so
never_so

‘Copyrght 2018 by Wler E Brown. A igtsreerved. 62

Let's Rethink Arithmetic

“I wish to God these calculations
had been executed by steam.”
— Charles Babbage,
1791-1871

Comrignt © 2019 by Walter €. Srown. Aligts eserves

_Summing is simple, right?
* Assuming 3-digit decimal mantissas, let’s add:
= 1.00 +.001 +.999 = (1.00 +.999) +.001 = 1.99
= But in reverse order: (.001+.999) + 1.00 = 2.00

* So, whenever possible, sum the smallest values first:
= Why? To reduce risk of loss of significance.

= double reordered_sum(double* from, double* upto) {
std :: sort(from, upto);
return std :: accumulate(from, upto, 0);
}
= Oops: The above starting value, 0, should be double{ }!

= Oops 2: What if some (or all!) values are negative?

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 64

10

Crazy Code, Crazy Coders

No, summing is often not so simple

e auto lessin.magnitude = [] (double x, doubley)
{ return std::abs(x) < std::abs(y); }

¢ auto reordered sum(double* from, double* upto) {
std::sort(from, upto, less_in.magnitude);
return std::accumulate(from, upto, double{ });

}

¢ This approach works for integral values, too, reducing
(but not eliminating) risk of overflow.

¢ In general, we worry about summing values that can:
= Have very large or very small values, and/or ...
= Have mixed signs.

Copyigh 02010y Wate . roun. A i s 65

For floating point (C++20)

¢ template< floating_point F >

F midpoint(Fa, Fb) { //see Hauser's theorem 3.4.1a,
// cited in F. Goualard: “How do you
// compute the midpoint of an
// interval?” ACM TOMS, 2014.

return can_safely sum(a, b)
? (a+hb)/2
safe_half(a) + safe_half(b);
}

¢ See also:

= G. E. Forsythe: “Pitfalls in computation, or why a math
book isn't enough.” Am. Math. Monthly, 1970 (!).

Copyigh 02010y Wate . roun. A s s 67

How about finding the midpoint (e.g.. in binary search)?
e Possible approaches to implement midpoint(a, b):
= return (a+b)/2; ?
= return a/2 +b/2;?
= return a + (b—a)/2;
* Btw, consider also the more general algorithm:
= Linear interpolation, a.k.a. LERP, a + t* (b - a).
= (midpoint and lerp are planned for the C++20 std library.)
e Some common issues (here, and for most arithmetic):
= Integer overflow, excessive truncation.

= Floating point underflow, denormals, gNaNs, sNaNs, infs,
signed zeroes, rounding {mode, frequency}.

Conyigh© 2010 by Wt . roun A s resned. 66

In fact, no computer arithmetic is simple — it's finite!

o Subtracting two nearly equal floating values may lead
to loss of significance via catastrophic cancellation:
= sqrt(x+1) — sqrt(x)
= 1/ (sqrt(x+1) + sqrt(x)) //equivalent, yet accurate for all x

// inaccurate when x > 1

e Multiplying even medium-valued ints risks overflow.

¢ Jsummation algorithms that compensate for finite
arithmetic’s pitfalls (e.g., Kahan-Neumaier, pairwise, ...).

* Older programs mimicked ~48-bit integers via long
double, but C++11 gave us long long, typically 64 bits.

compare floating-point values for exact equality.

Copyigh 02010y Wate . roun. A i s 69

The helpers (C++20)

¢ template< floating_point F >
bool cansafely sum(Fx, Fy) noexcept {
constexpr F upper = numeric_limits<F>:: max() / F{2};
return abs(x) <= upper
and abs(y) <= upper; }

¢ template< floating_point F >
bool can_safely halve(F x) noexcept {
return F{2} * numeric_limits<F>:: min() <= abs(x); }

¢ template< floating_point F >
F safe_half(F x) noexcept {
return cansafely halve(x) ? x/F{2} : x }

Conyigh© 2010y Wt . roun A s resned. 68

Is this really how best to ensure a non-positive n?
e if(n>0) n=n*-1;

e if(n>0) n=0-n;
en=n>0?nx*-1:n;

e n = -1 % abs(n);

e if(n>0) n-=2*n;

eif(n>0 || n<0) {
string str = "-"s + tostring(n);
str = regex_replace(str, "-=", "-");
: //some time later
n = stoi(str);

}

[— 70

11

Crazy Code, Crazy Coders

How about division

e ... with negative ints?
=15 /2 =2 =15 /-2 =2
= -15% 2 = ? = -15% -2 =»?

¢ By the way, what’s the proper name of operator % ?
= “The binary / operator yields the quotient,
and the binary % operator yields the remainder
from the division of the first expression by the second.
= “.. if the quotient a/b is representable in the type
of the result, (a/b)*b + a%b is equal to a; otherwise,
the behavior of both a/b and a%b is undefined.”
(See [expr.mul].)

‘Copyfght 2018 by Waller E Brown A rigts resenvd. 71

Wrong or right?

¢ How to decide whether n is odd?
= bool isodd(intn) {return n%2 == 1;}
= bool is.odd(intn) {return n&Obl == 0bl;}

= bool isodd(intn) {
if(n ==2'147'483'647) return true;
elseif(n== 0) return false;
return is.odd(n+=2);

}

= inline bool is_even(intn) {return n%2 == 0;
inline bool is.odd(intn) {return not is_even(n);

Conyigh© 2010 by Wt . roun A s resned.

72

The World Is Rarely Logical

Comrient © 2019 by Walter €. 8rown. Aligts eserves

_Even simple arithmetic can be challenging

e 59+1 =0 every minute,
unless there happens to be a leap second,
then 59+1 =60 and 60+1 => 0.

e Consider tennis scoring:
LovE+1=>15+1=>30+1 = 40 +1 = GAME.

* |In music, going up by a third and then up by a fifth
has the net effect of going up by a seventh!

* Increment your house number; is it your neighbor’s?

Conyigh© 2010y Wt . roun A s resned.

74

Consider arithmetic in pop culture

® “In the arithmetic of love, one plus one 4
equals everything, and two minus one
equals nothing.”
— Mignon McLaughlin \

e “Arithmetic is being able to count up to
twenty without taking off your shoes.”
— Mickey Mouse

e “Computer, compute to the last digit
the value of pi.”

— Mr. Spock

‘Capyfght 2018 by Waller E Brown A rigts resenvd. 75

12 MEGA PLUS
= 54 REGULAR

= 68 REGULAR

=72 REGULAR

18 PLus
= 82 REGULAR

30 DOuBLE PLus

12 SUPER MEGA

Conyigh© 2010 by Wt . rown A s esned.

76

12

Crazy Code, Crazy Coders

-i ion?

Claim: “every operator has a precedence — a specified
order in which the expressions are evaluated”:

= This popular impression has never been true.

= Precedence certainly influences order of evaluation,
but (except in trivial cases) does not determine it.

= |t also doesn’t help that that book is in its 7" edition! @

So what is the correct role of precedence?

= To determine which operands bind to which operators ...

= Using left/right associativity to break any ties.

= This enables a compiler to build the expression’s tree.

‘Copyfght 2018 by Waller E Brown A rigts resenvd. 7

Buildi . ithm
ion uses a different algorithm:

= To evaluate an expression is to traverse (systematically
walk) the corresponding expression tree, ...

= Along the way applying each operator to its operands
(evaluated expression subtrees) ...

= Resulting in both value computations and side effects.
e C++17 changed the order of evaluation for binary op’s:
= Previously specified at sequence points only, now ...

@ In assignment op’s, the right operand’s (subtree’s)
evaluation is sequenced before that of the left.

@ In all other binary op’s, the left operand’s (subtree’s)
evaluation is sequenced before that of the right.

‘Capyfght 2018 by Waller E Brown A rigts resenvd. 79

_On clarity and craftsmanship

e “[I]n general terms it's up to the

to use language that can be understood,
not hide it in some private code
e “[O]bscurity is usually the refuge of incompetence.”

— Robert A. Heinlein,
Stranger in a Strange Land, 1961

{,3

‘Capyfght 2018 by Waller E Brown A rigts resenvd. 82

£ ! X . :)
+ *
2 4
4 2
2+3%4 (2+3)%4
Copyigh©.2010 by Weter . rown A i e, 78

ot © 2019 by Walter €. Brown. Al eserved

_On semantics

“The difficulty of
is not to

but to write what you mean;

not to affect your
but to affect him precisely as you wish.”

— Robert Louis Stevenson,
The Truth of Intercourse, 1879

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 83

13

Crazy Code, Crazy Coders

_On correctness

* “As soon as we started programming,
we found to our surprise that it wasn't as easy
to get programs right as we had thought.

* “Debugging had to be discovered.

e “I can remember ... when | realized
that a large part of my life from then on
was going to be spent in finding mistakes
in my own programs.”

— Maurice V. Wilkes,
~1949

Copyigh 02010y Wate . roun. A i s 84

On clever coding

e “Debugging is twice as hard
as writing the code in the first place.

o “Therefore, if you write the code
o as cleverly as possible,
you are, by definition,
not smart enough to debug it.”

— Brian W. Kernighan & P. J. Plauger,
The Elements of Programming Style, 1974

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 85

_On compilers

“Even though the compiler

is supposed to be helpful,

it also treats you like an adult.”

— Jon Kalb,
Exception-safe Code: Part Il, 2014

‘Capyfght 2018 by Waller E Brown A rigts resenvd. 86

_On “non-local reasoning”

“The farther away
[that] I need to look for an answer,

the longer it takes

to comprehend code.”

— Matthew Fleming,
The Smart Pointers | Wish | Had, 2019

‘Copyrght 2018 by Wler E Brown. A igtsreerved. 87

_On reading code

¢ “[...] and then there are those beautiful,
snowflake-like cases of abuse,

“those moments where you see the code,

“you understand the code,

“and you wish that, somehow,
you could throttle the invisible person
responsible for that code.”

— Remy Porter,
Making Off with Your Inheritance, 2014

‘Capyfght 2018 by Waller E Brown A rigts resenvd. 88

_On harsh code reviews

e “Your code is 100% bogus and should be
taken out the back, lined up against a wall,
and machine-gunned.

e “Then the bleeding corpse should be
hung, drawn and quartered.

“Then burnt.

3

“Then the smouldering rubble
should be jumped up and down on.

“By a hippo.”
— Dave Korn,
2005

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 89

14

Crazy Code, Crazy Coders

On maintainabilty

“Always code

as if the [programmer]

who ends up maintaining your code
will be a violent psychopath

who knows where you live.”

— John F. Woods,
1991

‘Copyfght 2018 by Waller E Brown A rigts resenvd. 90

How Bad Can Code Get?

Comrient © 2019 by Walter €. 8rown. Aligts eserves

on lfe

“Life would be so much easier
if we could just look

at the source code.”

— Tom Parker (?)

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 91

) ing
* Here’s some shockingly inane code, provided
by a Highly Paid Consultant:
= Intent is to produce an ALL CAPS version of parameter s.
= std :: string capitalize(std :: string s) {
std :: string result;
if(s.empty())
return""s;
std :: for_each(s.begin(), s.end(), std :: toupper);
return result;

}

e This was clearly untested; how many mistakes and
misunderstandings can you find?

‘Copyrght 2018 by Wler E Brown. A igtsreerved. 93

_More thoughtless code fragments

e return(tot == 1? 1 : tot);

e if(not ok()) std :: runtime_error("oops!");

¢ bool not_provided(string const & str) {
if(str!=""s and strlength()>0) return true;
return false;
}

e while(busy) ; //wait until other thread says not busy
some_t do_something(-, bool busy, ~) {

V\;hile(busy) { /* wait until it’s not busy */ }

}

Copyigh 02010y Wate . roun. A i s 9%

_And still more code abuse
o #define SUCCESS 1
#define FAILURE 2

badly named fetn() {

réturn(succeeded(~) ? SUCCESS : FAILURE);
}

e my type * getme() { return this; }

e // bogosort (bogus sort; O(n*n!) expected swaps)
while(not std :: is_sorted(b, e))
std :: shuffle(b, e, std :: default_random_engine{ });

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 95

15

Crazy Code, Crazy Coders

_Atale of debugging hell

¢ | can’t show this code, so please imagine:

= A copy assignment operator, whose body, ...
= Through macro magic, has 2 implementations.
¢ In debug mode, it performs a traditional deep copy.

e But in production, to save time, it does a shallow copy:

= So changing the original (off in another thread) also
changes the copy, whereas ...

= |In debug mode, they are independent objects, each
with its own lifetime, so the bug (a race condition)
never manifests!

Copyigh 02010y Wate . roun. A i s %

_How not to close a bug report

“I didn’t understand
the diagnostic,
but this fixed the problem:

#define EXTERN static ”

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 97

And So ...

_Favorite. Comment. Ever,
/*
sok
**% When | wrote this code,
sk only God and | knew what's going on.
sk
sk Now only God knows.
sok
*/
[— %
) —

“Programming is a profession.

“It is an ethical obligation to work to
improve our profession.

“The more senior and talented you are,
the more you owe to the community.

“... Part of that obligation is to continue to
study, to read papers and work through books.”

— Sean Parent,
"Modern" C++ Ruminations, 2018

[— 100

ot © 2019 by Walter €. Brown. Al eserved

e Amateurs: ¢ Professionals:

have a goal. have a process.

think they are good at understand their circles
everything. of competence.

see feedback and know they have weak
coaching as a blow to spots and seek out
their ego. thoughtful criticism.

think knowledge is pass on wisdom and

power. advice.

blame others. accept responsibility.

‘Copyrght 2018 by Waler E Brown. Al igtsreerved. 101

16

Crazy Code, Crazy Coders

_It's the professional thing to do.”

‘Copyfght 2018 by Waller E Brown A rigts resenvd. 102

Do | have a problem?

e | admit that | do not like all programmers equally.

* While | am biased, it’s not due to issues of ethnicity,
religion, politics, etc.

e And it’s certainly not because some programmers use:
» Ada, » APL,* C,» Cobol, » Fortran, * Go, * Haskell, » Java,
» Javascript, * Lisp, * PL/I, » Python, » Ruby, * Rust, *» Swift,

_No problem, just a programming zealot!

o | dislike professionally incompetent programmers:

= Those who demonstrate inadequacy at our craft, ...
= AND who refuse to learn to do better!

¢ Not only do such coders make our jobs more difficult:

= But they don’t really care that their lack of skill and
of good judgment causes others to suffer, ...

= So long as they are paid.

e Who are those programmers?
= Just read their code.
= You will recognize them.

‘Capyfght 2018 by Waller E Brown A rigts resenvd. 104

or any other not-C++ programming language du jour.

L — 103

Crazy Code, Crazy Coders

FIN

WALTER E. BROWN, PH.D.

< webrown.cpp @ gmail.com >

Copyright © 2019 by Walter E. Brown. Al rights reserved

17

